The Nature of Disease
Pathology for the Health Professions
Thomas H. McConnell

Chapter 9
Disorders of the Heart
Lecture 9

Overview of Cardiac Lectures

– Review of Cardiac Physiology
– Heart Failure
– Coronary Artery Disease & Myocardial Infarction
– Valvular Heart Disease
– Diseases of the Myocardium (Heart Wall)
– Pericardial Disease
– Arrhythmias

Blood Flow Through the Heart

[Diagram of blood flow through the heart with labels]
Coronary Blood Flow

Cardiac Conduction System & EKG

Factors Affecting Cardiac Output

Also recall:
- Electrical signals normally follow the same pathway with every beat
- Atria and ventricles are electrically insulated from one another
- Every part of the CCS is capable of self-stimulation

Factors Affecting Cardiac Output

CO – Cardiac Output (~5L/min). Dependent upon Stroke Volume (SV; ~70 ml) and Heart Rate (HR)

CVP – Central Venous Pressure; Pressure in vena cava near the right atrium (affects preload; Starling mechanism)

Contractility – Increases in force of muscle contraction without change in resting length of sarcomeres

Afterload – Local against which the heart must pump, i.e., pressure in pulmonary artery or aorta

SV – Stroke Volume; Volume of blood left in heart after it has ejected blood (~50 ml)

EDV – End Diastolic Volume; Volume of blood in the ventricle before the heart contracts (~120–140 ml)

EDV – End Diastolic Volume; Volume of blood left in heart after it has ejected blood (~50 ml)

Figure adapted from: Aaronson & Ward, The Cardiovascular System at a Glance, Blackwell Publishing, 2007
Relationship of CO to Blood Pressure (MAP)

MAP (BP) → TPR

MAP = Mean Arterial Pressure
Average effective pressure driving blood flow through the systemic organs

The MAP is dependent upon CO and TPR, i.e., MAP = CO x TPR

TPR = Total Peripheral Resistance, depends upon Blood vessel radius, vessel length, blood viscosity, and turbulence.

MAP (BP) → TPR

MAP (BP) → HR

MAP (BP) → SV

MAP (BP) → EDV

MAP (BP) → ESV

MAP (BP) → CVP

MAP (BP) → ANS

MAP (BP) → Parasympathetic

MAP (BP) → Sympathetic

MAP (BP) → Contractility

MAP (BP) → Afterload

MAP (BP) → CVP

Frank-Starling Law

- Amount of blood pumped by the heart each minute (CO) is almost entirely determined by the venous return
- Frank-Starling mechanism
 - Intrinsic ability of the heart to adapt to increasing volumes of inflowing blood
 - Cardiac muscle reacts to increased stretching (venous filling) by contracting more forcefully
 - Increased stretch of cardiac muscle causes optimum overlap of cardiac muscle (length-tension relationship)

What does the term “Ejection Fraction” mean?

General Mechanisms Leading to Heart Disease

1. Pump failure
 - Weak contraction
 - Reduced CO
2. Obstructed flow
 - Atherosclerosis
 - Valvular defects
3. Abnormal Conduction
 - Poorly timed, premature/late, or mechanically inefficient beats
 - Result is reduced CO
4. Regurgitant flow (regurgitation)
 - Valvular defects
 - Heart must re-pump blood
5. Shunted flow
 - Diversion by congenital defects, e.g., patent foramen ovale
 - Heart must work harder and re-pump blood
Heart Failure (HF)

• Definition: A syndrome of ventricular dysfunction in which
 – CO cannot meet metabolic demands, or
 – Ventricle must be dilated to meet metabolic demands (recall Frank-Starling Law and point of 'decompensation')
 – The endpoint for most serious heart diseases

• Causes of HF fall into two major groups
 1. Increased workload on the heart
 2. Muscle failure

Left/Right Sided Heart Failure

• Left heart failure (Congestive heart failure; more common)
 – Causes of increased workload on left ventricle
 • Hypertension
 • Mitral or aortic valve regurgitation
 • Aortic valve stenosis
 • Congenital disease
 – Reduced CO activates RAA System; ↑ fluid, BP

• Right heart failure
 – Causes of increased workload on right ventricle
 • *Most common cause: increased workload due to left ventricular failure
 • Increase in left ventricular filling pressure that is reflected back into the pulmonary circulation

• General causes of left & right ventricular muscle failure
 • Ventricular infarction (most common cause of left-sided failure)
 • Cardiomyopathy

Heart Failure (HF)

• Before failing, heart tries to compensate
 – SNS and adrenal NE release
 – Cardiac Muscle Hypertrophy

• After failing
 – Systolic failure
 – Ventricle contracts poorly
 – Incomplete emptying of ventricle (↓ ejection fraction, CO)
 – Diastolic failure
 – Impaired ventricular relaxation
 – Impaired ventricular filling
 – Uncompensated failure (falling CO)
 – Forward failure (Low CO)
 – Backward failure (upstream venous congestion)

 - Cor Pulmonale – Right HF due to pulmonary hypertension
Heart Failure (cont’d)

- Manifestations of left heart failure:
 - Associated with both forward and backward failure
 - Result of pulmonary vascular congestion and inadequate perfusion of the systemic circulation
 - Include dyspnea, orthopnea, cough of frothy sputum, fatigue, decreased urine output, and edema
- Manifestations of right heart failure:
 - Result of backward failure
 - Engorgement of system venous system
 - Hepatomegaly, splenomegaly
 - Edema of feet/legs (peripheral edema)
 - Ascites
 - Pleural effusion
Heart Failure - Modes

Heart Failure – Compensated/Uncompensated

Signs and Symptoms of Heart Failure
General Mechanisms Leading to Heart Disease - Review

1. **Pump failure**
 - Weak contraction
 - Reduced CO

2. **Obstructed flow**
 - Atherosclerosis
 - Valvular defects

3. **Abnormal Conduction**
 - Poorly timed, premature/late, or mechanically inefficient beats
 - Result is reduced CO

4. **Regurgitant flow (regurgitation)**
 - Valvular defects
 - Heart must re-pump blood

5. **Shunted flow**
 - Diversion by congenital defects, e.g., patent foramen ovale
 - Heart must work harder and re-pump blood

CAD, Myocardial Ischemia, and Myocardial Infarction

- **Continuum of diseases that narrows or occludes the coronary arteries leading to myocardial ischemia**
- **Coronary Artery Disease (CAD)**
 - Usually occurs first, followed by MI or other heart damage
 - Typically caused by atherosclerosis
 - May lead to myocardial ischemia and infarction (MI) or irreversible heart damage (acute coronary syndromes)

Typical Risk factors for CAD and atherosclerosis

- **Major:**
 - Increased age
 - Family history
 - Male gender or female gender post menopause

- **Modifiable:**
 - Dyslipidemia
 - Hypertension
 - Cigarette smoking
 - Diabetes mellitus
 - Obesity/sedentary lifestyle
 - Atherogenic diet

Myocardial Ischemia

- **Local, temporary deprivation of the coronary blood supply**
- **Some clinical manifestations**
 - **Stable angina** - chest pain with gradual onset with exertion; relieved by rest
 - **Unstable angina**
 - Aggregation of platelets on an atherosclerotic plaque
 - Intensification of existing angina, new angina, nocturnal angina, prolonged angina
 - **Very serious:** May indicate a MI is imminent
 - Not usually relieved by rest or medicine
 - **Unremitting angina**
 - **Caused by myocardial infarction**
 - Doesn’t fluctuate and can’t be relieved by rest or medication
 - **Prinzmetal angina** (Transient, unpredictable, occurs at rest; vasospasm)
 - Silent/mental-stress ischemia (silent; more common in women)
Acute Coronary Syndromes

- Result of sudden coronary obstruction by thrombus or ruptured atherosclerotic plaque
- Unstable angina
 - Reversible
 - Indicator of impending infarction
 - Caused by platelet aggregation
- Myocardial infarction
 - Prolonged ischemia
 - Irreversible damage
 - STEMI or non-STEMI
 - Unremitting angina
- Sudden death can result from either

Myocardial Infarction

- Myocardial infarction
 - Sudden and extended obstruction of the myocardial blood supply
 - Subendocardial infarction
 - Only myocardium immediately beneath endocardium
 - Usually ST depression and T-inversion = non-STEMI
 - Transmural infarction
 - Endocardium through the epicardium
 - ST segment elevation = STEMI
 - Highest risk for complications
- Pathophysiology
 - Cellular injury
 - Cellular death
 - Structural and functional changes:
 - Myocardial stunning
 - Hibernating myocardium
 - Myocardial remodeling
 - Repair

ECG Changes and Myocardial Ischemia

- Normal ECG deflections
- ST segment depression
- T wave inversion
- ST segment elevation
- Subendocardial
- Transmural
Myocardial Infarction (cont’d)

- **Clinical Manifestations:**
 - Sudden severe chest pain (angina); may radiate
 - Upset stomach
 - Light headed
 - Shortness of breath (Dyspnea)
 - Excessive Sweating (Diaphoresis)

- **Complications:**
 - Sudden cardiac arrest due to ischemia, left ventricular dysfunction, and electrical instability
 - The above three are most closely correlated with sudden death from MI.

- **Blood markers of MI**
 - Creatine Kinase (CK-MB); for 2-3 days
 - cTnI and cTnT; for 7-10 days
 - LDH1 (less useful; elevated late)

Valvular Disease (Endocardium)

- **Valvular dysfunctions:**
 1. Valvular stenosis
 - Narrowing of valve opening
 - Aortic stenosis (most common valvular abnormality)
 - Mitral stenosis
 2. Valvular insufficiency (regurgitation)
 - Retrograde flow of blood through a valve
 - Aortic regurgitation
 - Mitral regurgitation
 - Tricuspid regurgitation
 - Mitral valve prolapse syndrome (MVPS)
 - Accumulation of myxoid material
 - Most common valve disease in U.S.
 - Most patients are asymptomatic

Acute Rheumatic Fever and Rheumatic Heart Disease

- **Rheumatic fever**
 - Systemic, inflammatory disease
 - caused by a delayed immune response to pharyngeal infection by the group A beta-hemolytic streptococci
 - Febrile illness
 - Inflammation of the joints, skin, nervous system, and heart
 - If left untreated, rheumatic fever causes rheumatic heart disease
 - Endocardium and valves may be involved
 - Mitral and aortic valves most often

Figure from: McConnell, The Nature of Disease, 2nd ed., LWW, 2014
Infective Endocarditis (cont’d)

Endocarditis – growth of vegetations on cardiac valves (occasionally other endocardial sites)

Strepto- and enterococci infection most commonly.

Disorders of the Myocardium: Cardiomyopathy

- Inflammatory = myocarditis
- Intrinsic muscle disease = cardiomyopathy

Types of Cardiomyopathy:
- Measurable dysfunction of the myocardium
- Dilated cardiomyopathy (congestive cardiomyopathy)
- Hypertrophic cardiomyopathy
 - Thickening of myocardium
 - Asymmetrical septal hypertrophy
 - Hypertensive (valvular hypertrophic) cardiomyopathy
- Restrictive cardiomyopathy

Disorders of the Pericardium

- Most common disorders of the pericardium
- Localized manifestation of another disorder:
 - Acute pericarditis (< 2 wks)
 - Acute inflammation of pericardium
 - Usual cause is viral infection or MI
 - Pericardial effusion
 - Tamponade (when effusion is rapid); heart cannot fill
 - Hemopericardium (undiluted blood)
 - Constrictive (restrictive) pericarditis
 - Chronic scarring and obliteration of pericardial sac
 - Impaired diastolic filling
Arrhythmias (Dysrhythmias)

- Abnormalities of the heart rhythm
- Range from occasional “missed” or rapid beats to severe disturbances that affect the pumping ability of the heart
- Some definitions to know:
 - Escape rhythm – rhythms not initiated by the SA node
 - Ectopic beat – Originating at a site other than the SA node
 - Cardiac arrest – Sudden cardiovascular collapse and unconsciousness
 - Electroconversion – defibrillation
 - Sinus arrest – lack of any electrical discharge from the SA node
 - Premature atrial contractions (PACs) – ectopic, originate in atria
 - Premature ventricular contractions (PVCs) – ectopic, originate in ventricles (do not pass backwards to SA node)
 - Flutter – rapid, but regular and evenly spaced beats
 - Fibrillation – rapid, irregular and unevenly spaced (little/no CO)
 - Reentry loop – originates in CCS, but loops back into it again
 - Junctional arrhythmia – ectopic beat with origin near AV node

General Classification of Arrhythmias

Cardiac Arrhythmias (Dysrhythmias)

- Arrhythmias classified into three broad categories
 1. Those associated with impulses arising from SA node
 - Sinus brady- and tachycardia, sinus arrhythmia, sinus arrest
 2. Those associated with impulses arising from OTHER than the SA node; Ectopic signals
 - In atria: Premature, Flutter (rapid, regular), Fibrillation (irregular)
 - In ventricles: Premature, Flutter (tachycardia), Fibrillation
 - Ventricular tachycardia (≥ 3 consecutive ectopic beats; rate >120 bpm)
 - Ventricular fibrillation (CO is effectively zero)
 - At AV node junction (junctional arrhythmia)
 - Originate near the AV node
 - Sometimes called Supraventricular Tachycardia
 - Causes tachycardia
Cardiac Arrhythmias (Dysrhythmias)

- Arrhythmias classified into three broad categories (cont'd)
 3. Those associated with impulses arising from OTHER than the SA node; Ectopic signals
 - In atria
 - Premature atrial beats (usually not pathologic)
 - Atrial flutter (rapid, but regular)
 - Atrial fibrillation (rapid and irregular)
 - In ventricles
 - Premature Ventricular Contractions (PVC)
 - Early ventricular beat
 - Interferes with next impulse from SA node
 - Ventricular tachycardia (≥ 3 consecutive ectopic beats; rate >120 bpm)
 - Ventricular fibrillation (CO is effectively zero)
 - At AV node junction (junctional arrhythmia)
 - Originate near the AV node
 - Sometimes called Supraventricular Tachycardia
 - Causes tachycardia

EKGs

- Normal Sinus Rhythm
- Sinus Tachycardia
- Sinus Arrest

EKGs

- Normal Sinus Rhythm
- Atrial Flutter
- Atrial Fibrillation