Chapter 4
Infectious Health Problems

Overview of Today’s Lecture

• Factors in Infection
• Overview of the classes of microorganisms
• Infection and Injury
 – Classes of Microorganisms
 • Bacteria
 • Viruses
 • Rickettsiae, Mycoplasma, Chlamydia
 • Fungi
 • Parasites
 – Communicable Disease
 – Clinical Manifestations
 – Antimicrobial Therapy
• Immunodeficiency

Review: Innate Antimicrobial Protection

Introduction to Infectious Disease

- **Infectious disease**
 - Transmissible (infectious) agent (microbes)
 - Invades through physical barriers (innate defenses)
 - Overcomes innate and adaptive immune defenses of host
 - Causes injury and disease (now called a *pathogen*).

- **Endemic rate** – normal expected rate of infection

- **Epidemic** – greater than normal infection rate

- **Commensal relationship** – organism benefits, we are not harmed

- **Parasites** – organisms that need the host to survive

Microorganism and Human Relationship

- **Mutual relationship**
 - Normal flora
 - Relationship can be breached by injury
 - Leave their normal sites and cause infection elsewhere

- **Opportunistic microorganisms**
 - Normally held in check by immune system/defenses
 - Do not usually cause disease except when a person’s decreased immunity/defenses allow it

Classes of Microorganisms

- Classes of Microorganisms (approx. from smallest to largest)
 - **Prions** (misfolded proteins, PrP)
 - **Viruses**
 - **Chlamydia** (pathogenic bacteria, especially common in STIs)
 - **Rickettsia** (non-motile, gram negative bacteria)
 - **Mycoplasma** (bacterial genus lacking a cell wall)
 - **Bacteria**
 - **Fungi**
 - **Protozoa** (unicellular, eukaryotic, usually motile organisms)
 - **Helminths** (multicellular, parasitic worms)
 - **Ectoparasites** (multicellular, insect-like, invade skin)
Factors Influencing Pathogen’s Infectivity

- True pathogens can circumvent the body’s normal defenses, depending on the following factors:
 - Pathogenicity
 - Ability of an agent to produce disease
 - Success depends on communicability, infectivity, extent of tissue damage, and virulence
 - Immunogenicity
 - Ability of pathogens to induce an immune response
 - Infectivity
 - Ability of pathogens to invade and multiply in the host
 - Involves attachment to cell surface, release of enzymes, escape from phagocytes, spread through lymph and blood to tissues
 - Virulence
 - Capacity of a pathogen to cause severe disease; for example, measles virus is of low virulence, while rabies virus is highly virulent

Factors Influencing Infection (cont’d)

- Communicability
 - Ability to spread from one individual to others and cause disease; measles & pertussis spread very easily, HIV is of lower communicability
- Mechanism of action
 - How the microorganism damages tissue
- Portal of entry
 - Route by which a pathogenic microorganism infects the host
 - Direct contact
 - Inhalation
 - Ingestion
 - Bites of an animal or insect
- Toxigenicity
 - Ability to produce soluble toxins or endotoxins, factors that greatly influence the pathogen’s degree of virulence
- Tropism – Preference for infect a particular tissue or cell

Communicable Disease

- Communicable Diseases are those spread from person to person
 - Usually by infected blood, body fluids
 - All communicable diseases are infectious
- Modes of Transmission (Mn: DIVIDE)
 - Direct Contact
 - Ingestion
 - Vectors
 - Indirect Contact
 - Droplets (airborne)

Host Reaction to Infectious Organisms

- **Viruses**
 - Chronic inflammation
 - Lymphocytes and monocytes
 - Can be cytopathic or cytoproliferative

- **Bacteria**
 - Suppurative (purulent) inflammation – acute
 - Neutrophil infiltrate at site and in blood (neutrophilia)
 - Exceptions: Chlamydia and Treponema pallidum (syphilis)
 - Exceptions: Mycobacterium tuberculosis -> granulomatous (chronic) inflammation with lymphocytes and monocytes forming nodules

- **Fungi**
 - Granulomatous inflammation

- **Parasitic worms (helminths)** – eosinophils

- **Protozoa** – Variable

The Natural Course of Infection

Examples of Pathogen Defense Mechanisms

- **Bacteria**
 - Produce surface coats that inhibit phagocytosis
 - Outer coat: gram+ org, waxy coat, LPS
 - Produce toxins (leukocidins) that destroy neutrophils
 - Molecules that destroy Ig’s: IgA proteases

- **Viruses**
 - Many can mutate within cells where they are not available to immune and inflammatory mechanisms
 - Not available to antibodies in circulation
 - Antigenic variations:
 - Antigenic drift – mutation in key surface antigens
 - Antigenic shifts – genetic recombination that changes antigenic properties
Viral Infections

- Characteristics of viruses:
 - Dependent on host cells for their replication
 - No metabolism
 - Simple organism
 - Genetic material
 - Surrounding layer of proteins (capsid)
 - Usually a self-limiting infection
 - Spreads cell to cell
 - Virus then uncoats in cytoplasm
 - DNA virus replicates in nucleus (except poxviruses)
 - RNA virus replicates in cytoplasm (except influenza/retroviruses)
 - Post-infection immunity depends on whether or not virus mutates regularly

Acute (Transient) Viral Infections

- Respiratory-tropic
 - Rhinoviruses (100 varieties); common cold
 - Usually spread by person-to-person contact
 - Respiratory droplet (airborne) transmission is possible
 - Adenoviruses; Tonsillitis, conjunctivitis, bronchiolitis
 - Respiratory Syncytial Virus (RSV)
 - Major cause of lower respiratory tract infection in children
 - Bronchiolitis, pneumonia
 - Influenza (influenza viruses type A and B)
 - Flu-like symptoms (fever, chills, nasal congestion, cough, myalgia, malaise)
 - Spread mainly by respiratory droplets
 - May cause problems in "at-risk" segments of the population

- Gastrointestinal-tropic (usually fecal contamination)
 - Rotavirus
 - Most common cause of severe diarrhea in infants and young children
 - Fecal-Oral route transmission
 - Vomiting, severe diarrhea, dehydration
 - Common in daycare centers
 - Norovirus (Norwalk virus)
 - 90% of non-bacterial gastroenteritis in older children and adults
 - Caused by fecally contaminated food, water
 - Transmission by person-to-person contact or aerosolization
 - Prevalent in "close" quarters: Cruise ships, long-term care facilities, overnight camps, hospitals, prisons, dormitories
 - Nausea, abdominal pain, vomiting, watery diarrhea
Acute (Transient) Viral Infections

- Other transient viral infections
 - Measles (rubeola)
 - Highly contagious; nasal and oral secretions
 - Characteristic maculopapular rash (flat, red area on skin covered with small confluent bumps)
 - Rash-like Koplick spots on check mucosa
 - Mumps
 - Contagious (but less than measles)
 - Tropic for salivary glands, esp. parotid
 - Rubella (German measles)
 - Contagious (but less than measles); droplet
 - May be asymptomatic or brief, mild febrile illness
 - Coxsackie (Types A and B)
 - Type A is tropic for oral mucosa and skin (hand-foot-and-mouth disease); usually infants/children
 - Type B is tropic for heart, lung, pancreas, and nervous system
 - No vaccine
 - Hepatitis A (HAV)
 - Epidemic, fecal-oral transmission

Persistent (Chronic) Viral Infections

- Immune system does not eliminate virus
 - Latent – recurrent flare-ups
 - Productive – chronic inflammation and tissue injury
 - Transformative – transformation of normal tissue into neoplasm
- Latent
 - Herpes simplex virus (HSV)
 - Type 1 (mainly oral cold sores) and type 2 (mainly genital)
 - Small, painful blisters in skin or mucosa
 - Tropic for sensory axons; then travels to neuron cell body
 - No vaccine (acyclovir can limit and lessen symptoms)
 - Herpes zoster (varicella-zoster) virus – related to HSV (above)
 - Acute infection is chickenpox (children typically)
 - Usually mild, short-term constitutional symptoms except in immunocompromised
 - Tropic for neurons, persists, and may reactivate to cause shingles (adults)
 - Cytomegalovirus (variant of herpesvirus)
 - Tropic for blood monocytes; asymptomatic or may mimic infectious mononucleosis
 - Crosses the placenta, be transmitted to newborn through vaginal secretions or milk
 - Most common opportunistic in AIDS patients
- Transformative Virus Infections
 - Epstein-Barr Virus (EBV)
 - Agent of infectious mononucleosis (IM), usually young adults
 - Chronic infection linked to some lymphomas and carcinomas
 - Human Papilloma Virus (HPV)
 - Tropic for skin and squamous mucosa
 - Some asymptomatic, some skin warts, anogenital warts, cervical dysplasia/cancer
 - Vaccine available for most types
Bacteria

- Single-cell
- Single chromosome, no nucleus (prokaryotic)
- Classified by
 - Shape (coccis, bacilli, coccobacilli)
 - Requirement for oxygen
 - Gram stain (positive or negative)
 - Acid fast (mycobacterium, nocardia)

Bacterial Virulence & Toxins

- Bacterial toxin production
 - Exotoxins
 - Proteins and Enzymes released during growth
 - Enzymatically inactivate or modify key cellular components
 - Diphtheria toxin; inhibits cellular protein synthesis
 - Botulinum toxin; decreases release of acetylcholine causing flaccid paralysis
 - Tetanus toxin; decreases release of glycine/GABA causing spastic paralysis
 - Immunogenic
 - Antitoxin production
 - Can produce antibodies against exotoxins
 - Some vaccines available
 - Endotoxins
 - Lipopolysaccharides (LPS) contained in the cell walls of gram-negative organisms released during cell destruction
 - Pyrogenic (fever-producing) effects; endotox/sepptic shock

Bacterial Virulence

- Bacteria in blood
 - Presence = bacteremia
 - Growth = septicemia (sepsis)
 - Failure of immune system to check bacterial growth

- Invasion of blood by bacteria
 - A result of a failure of the body’s defense mechanisms
 - By gram-negative bacteria
 - Endotoxins released in the blood
 - Release of vasoactive peptides and cytokines
 - Produce widespread vasodilation leading to septic (endotoxic) shock

Bacteria - Cocci

- Gram positive cocci
 - Most are aerobic
 - Usually cause acute, intense, pyogenic infections
 - Staphylococci (grow in tight clusters), e.g., S. aureus
 - Streptococci (grow in twisted chains)
 - Identified by
 - Antigenic properties into groups (A, B, D, etc.)
 - Character of hemolysis they cause (green (α), clear (β), none)
 - Examples:
 - Streptococcus pneumoniae (pneumococcus) causes lobar pneumonia
 - Streptococcus pyogenes

- Gram negative cocci
 - Neisseria are only important ones; N. meningitidis
 - Causes life-threatening meningitis, especially in children

Streptococcal Diseases

Figure from: McConnell, The Nature of Disease, 2nd ed., Wolters Kluwer, 2014
Bacteria - Bacilli

- **Gram positive bacilli**
 - Illnesses caused are typically species-specific
 - Examples:
 - Corynebacterium Diptheriae (diptheria)
 - Listeria monocytogenes (food borne infections)
 - Bacillus anthracis (anthrax)
 - Clostridium (C. difficile, C. perfringens, C. tetani, C. botulinum)

- **Gram negative bacilli**
 - Intestinal infections
 - H. pylori, E. coli, Salmonella, Shigella, Vibrio cholera
 - Respiratory infections
 - H. influenza, Legionella pneumophila, Bordatella pertussis, Pseudomonas aeruginosa

Rickettsiae, Mycoplasmas, and Spirochetes

- Have characteristics of both bacteria and viruses

 - **Rickettsiae**
 - Obligate intracellular parasites
 - Also gram-negative bacteria
 - Target human endothelium

 - **Mycoplasmas**
 - Lack cell wall
 - Survive on surface of host cells
 - Commonly found in human urogenital & respiratory tracts

 - **Spirochetes**
 - Gram negative, flagellated, thin, motile, corkscrew shaped
 - Example: Borrelia Burgdorferi (Lyme disease)

Mycobacteria Cause Chronic Infection

- Mycobacteria are aerobic, acid-fast, comma shaped
- M. tuberculosis, M. lepreae (leprosy), M. avium (common in AIDS opportunistic infection), M. bovinum
- **Mycobacterium Tuberculosis**
 - Tuberculous (TB) is a major, chronic, progressive, and communicable disease
 - Lungs most commonly affected; vertebræ & meninges also
 - Distinctive granulomatous inflammation
 - Monocyte and lymphocyte infiltration
 - Caseous necrosis with crumbly, cheese-like necrotic tissue
 - Incidence has declined in US except in certain target populations
 - poor, crowded, debilitated, and aged at risk
 - immunocompromised, DM, chronic lung diseases, malnutrition, alcoholism
Pathogenesis of Tuberculosis

Figure from: McConnell, The Nature of Disease, 2nd ed., Wolters Kluwer, 2014

Pathology of Tuberculosis

• 1st TB
 - Small focus of granulomatous inflammation
 - Scarring causes calcified, necrotic lesions, Ghon tubercles, in lungs (primary infection site)
 - When Ghon tubercles also appear in hilar LN > Ghon complex

• 1st progressive TB (only about 5% of clinical cases)
 - Typically seen in children and target population
 - Bacterial spread is more extensive than primary TB
 - May ‘seed’ other organs through blood (miliary TB)
 - NO caseating granulomas (Why?)

• 2nd TB (reactivation TB; about 95% of clinical cases)
 - Characterized by caseating granulomatous inflammation since this occurs in previously sensitized individuals
 - Fewer granulomas, but they are typically larger
 - Lesions typically seen in apex of lung
 - May cavitate into airways and facilitate spread through coughing

Diagnosis and Treatment of TB

• Typically mild clinical onset with fever, night sweats, mild malaise, weight loss, and poor appetite
 - If neglected, causes wasting (‘consumption’)
 - If progresses, productive cough perhaps with blood

• Test is the Purified Protein Derivative (PPD)
 - Skin test for infection, not disease
 - After 2 weeks post infection, positive test
 - Almost all negative tests have not been infected
 - 48-72 hours after PPD injection (on volar surface of forearm)
 - Must be induration (hard, tense), not just erythematous, to be positive
 - < 5 mm: high risk for development of active TB
 - 5-10 mm: increased risk for development of active TB
 - > 10 mm: unlikely to develop to active TB
Fungal Infection

- Characteristics of fungi
 - Relatively large microorganisms
 - Thick rigid cell walls without peptidoglycans (resist penicillin and cephalosporins)
 - Eukaryotic (nucleated)
 - Exist as
 - single-celled yeasts; facultative anaerobes
 - multi-celled molds; aerobic
 - Sometimes both (dimorphic fungi)
 - Reproduce by simple division or budding

Infection and Injury - Fungal Infection

- Pathogenicity
 - Adapt to host environment
 - Wide temperature variations, digest keratin, low oxygen
 - Suppress the immune defenses
 - Usually controlled by phagocytes, T lymphocytes
 - Diseases caused by fungi are called mycoses
 - Superficial, deep, endemic (dimorphic fungi), or opportunistic
 - Fungi that invade the skin, hair, or nails are known as dermatophytes (superficial mycoses)
 - The diseases they produce are called tineas (ringworm)
 - Tinea capitis, tinea pedis, and tinea cruris
 - Deep fungal infections are life threatening and are commonly opportunistic (e.g., with antibiotics or pH changes).
 - *Changes that alter normal flora promote fungal infections

Infection and Injury - Fungal Infection

- Candida albicans
 - Usually superficial as commensals on skin and mucous membranes
 - Candidiasis or moniliasis
 - Spread from superficial structures more serious
 - Aspergillus is another commensal that can become dangerous in immunocompromised individuals

- Deep mycoses
 - B. dermatidis – Blastomycesis (endemic)
 - Coccidioides – Coccidiomycosis (SW US)
 - Histoplasma – Histoplasmosis (bat guano)
 - Pneumocystis jiroveci only occurs in immunocompromised individuals

Clinical Models – Tinea (Fungus)

- Group of fungal skin diseases that occur in several locations
 - Feet (tinea pedis)
 - Nails (tinea unguium)
 - Scalp (tinea capitis)
 - Groin (tinea cruris)
 - Skin (tinea corporis/ringworm, tinea versicolor)

- Pathophysiology
 - Major route of transmission is by direct contact with infected reservoir
 - Some predisposing factors
 - Exposure to moist conditions
 - Genetic predisposition
 - Immunocompromise
 - Sharing of hygiene facilities with infected individuals
 - Fungus (dermatophyte) attaches to keratinized cells and causes thickening
 - May be complicated by bacterial superinfection or invasive dermatophyte invasion

Infection and Injury - Parasitic Infection

- Parasite – organism that benefits at host’s expense

- Major classes of parasites
 - Unicellular, nucleated, motile protozoa
 - Include malaria, amoebae, flagellates
 - Cases of Primary Amoebic Meningoencephalitis in 2013 caused by Naegleria fowleri
 - Large worms (helminths)
 - Flatworms (flukes), roundworms (nematodes), tapeworms (cestodes)
 - Ectoparasites – life on surface of host: lice, scabies,

Insect vectors; Infect blood

Protozoa

- Malaria (Plasmodium spp.; most common protozoan infection worldwide)
 - Vector is mosquito
 - Invades/destroy RBCs
- Leishmaniasis (Leishmania spp.)
 - Chronic, inflammatory disease
 - Infects WBC, skin, mucous membranes, viscera
 - Vectors are sandflies
- Trypanosomiasis (Trypanosoma spp.)
 - Infects blood
 - Vectors are several types of insects
 - African sleeping sickness; Chagas disease (cats are reservoir)
- Amebiasis (Entamoeba histolytica)
 - Consumption of fecally contaminated food
 - Intestine (diarrhea), portal blood to form amebic abscesses, brain and lung
- Giardiasis (Giardia lamblia; most common protozoan infection in US)
 - Ingesting fecally contaminated water or produce (chlorination not effective)
 - Acute or chronic diarrhea when symptomatic
- Cryptosporidiosis (Cryptosporidium, also called microsporidiosis)
 - In soil, food, water, fecally contaminated surfaces
 - Diarrhea in immunocompromised
Helminths (worms)

- **Peripheral blood eosinophilia** is a hallmark
- **Roundworms (nematodes)**
 - *Filaria*
 Vector in mosquito
 - Infects Lymphatics and subcutaneous tissue
 - Vector usually of women and aged (elephantiasis)
 - **Intestinal roundworms** (Usually tropical areas; oral-fecal contamination; intestine)
 - **Ascaris** (Ascaris spp.) – intestinal bleeding/obstruction, anemia (feed on blood),
 - **Hookworms** – intestinal bleeding, anemia
 - **Parasites** – common pediatric infection in US; intestine, perianal area
 - **Trichina** – eating inadequately cooked pork; spread to muscle (pain, fever)
 - **Flatworms (flukes, trematodes)**
 - Infect blood vessels, GI tract, lungs, or liver
 - **Schistosomiasis** – most common of all worm infections; mail vector
 - **Tapeworms (cestodes)**
 - 3 stages: eggs, larvae, adult
 - Internal infection
 - Adults are named for their intermediate host, e.g., fish, beef, pork; larvae are in muscle
 - When intermediate host is eaten (undercooked), larvae develop
 - **Echinococcosis (hydatid disease)**

Sexually Transmitted Infections (STIs)

- Infections communicated by sexual contact
 - Can be caused by any type of microorganism
 - *Viruses*, e.g., genital and anorectal warts by HPV, genital herpes, HIV
 - *Bacteria*, e.g., syphilis, gonorrhea, Chlamydia, Mycoplasma
 - *Parasites*, e.g., trichomoniasis (amebic), scabies (skin mites), lice (pediculosis)
 - Some non-STI infections can be transmitted sexually, e.g., viral hepatitis
 - Problematic because many cases are asymptomatic and this increases the risk of transmission
 - Safe-sex practices can prevent STIs
 - Chlamydia (C. trachomatis) is most common STI in the world
 - Chlamydia and gonorrhea (N. gonorrhoeae) are the most common causes of STI-related infertility

Infection and Injury – Countermeasures; Antimicrobials

- **Antimicrobials (antibiotics)**
 - Usually products of fungi or bacteria that inhibit growth of bacteria
 - **Bactericidal** (kill) vs. **bacteriostatic** (inhibit growth)
 - General mechanisms of most antibiotics
 - Inhibit synthesis of cell wall and other proteins
 - Damage cytoplasmic membrane
 - Alter metabolism of nucleic acid, inhibition of DNA synthesis
 - Modify energy (folic acid) metabolism
 - **Antimicrobial resistance mechanisms**
 - Genetic mutations transmitted to other bacteria by plasmid exchange
 - Inactivation and/or breakdown of antibiotic
 - Multidrug transporters in bacterial cell membrane inhibit uptake
 - Multiple antibiotic-resistance bacteria (e.g., MRSA, VISA, VRSA, etc.)<br - Major problem in hospitals<br - Inadequate patient compliance with antibiotic regimen<br - Overuse/over-prescribing of antibiotics by healthcare professionals
Vaccines

- Biologic preparations of weakened or dead pathogens
 - Live, attenuated strains; not enough virus to cause disease (except in immunocompromised individuals)
 - Heat killed virus; outer protein coat stays intact to promote immune response
- Recombinant viral protein
- Long lasting immunity (artificial, active)
 - Primary response is short-lived
 - Booster increases secondary response
- CDCP schedules @ http://www.cdc.gov/vaccines/schedules/index.html
- Vaccines against bacterial exotoxins are called ‘toxoids’, e.g., DPT
- Reluctance to vaccinate
 - Most objections are based on incomplete or incorrect information
 - Complications are rare
 - Removal of thimerosal (Hg containing) from most vaccines in 2001 has lessened the risk and increased the favorable perception about vaccines